Price Rewind: 2019 Prices for a Limited Time + Save Up to $300 in Early Registration Discounts! *Restrictions apply.

  • University
  • Corporate
    • Go to my cart
  • Login
School of PE LogoSchool of PE Logo White
  • Go to my cart
  • Clear my cart
  • Engineering
    • FE
    • PE
    • Surveying
    • University Students

    FE

    • FE Civil
    • FE Electrical
    • FE Mechanical
    • FE Other
    • FE Environmental
    • FE Chemical
    • FE Industrial

    PE

    • PE Civil
      • Construction
      • Geotechnical
      • Structural
      • Transportation
      • Water Resources and Environmental
    • CA Civil
      • Seismic
      • Surveying
    • PE Mechanical
      • HVAC & Refrigeration
      • Machine Design & Materials
      • Thermal & Fluid Systems
    • PE Electrical & Computer
      • Power
      • Computer
      • Electronics, Controls, & Communications
    • PE Structural (SE Exam)
      • Lateral Forces
      • Vertical Forces
    • All Other PE Courses
      • PE Environmental
      • PE Chemical
      • PE Architectural
      • PE Control Systems
      • PE Industrial
      • PE Petroleum
      • PE Fire Protection

    Surveying

    • Fundamentals of Surveying
    • Principles and Practice of Surveying

    University Students

    • FE Civil
    • FE Electrical
    • FE Mechanical
    • FE Other
    • FE Environmental
    • FE Chemical
    • FE Industrial
  • Project Management
    • PMI Certification
    • Project Management

    PMI Certification

    • PMP®
    • CAPM®
    • PMI-ACP®

    Project Management

    • Fundamentals of Project Management
    • Earned Value Management
  • Architecture
    • ARE® 5.0

    ARE® 5.0

    • ARE® 5.0 Ultimate Bundle
  • Self-Study
  • Question Bank
  • Continuing Education
    • PDHs
    • PDUs
  • More
    • About School of PE
    • Tutoring
    • Testimonials
    • FAQs
    • Contact Us
    • Blog
    • Podcast
  • University
  • Corporate
  • Login
Information
*Discounts and total savings vary by course and schedule. All discounts already shown on site. Offer valid on new registrations only.
Alert

There are no items in your cart

Alert

OK
ATTENTION

NCEES has released updated exam specifications for . These changes are effective with exams beginning on October 1, 2025.

Blog Banner

School of PE Blog

This blog includes a compilation of subject-matter expert-authored articles covering topics within engineering, project management, architecture, and more.

  1. Home
  2. Blog
  3. what is ductility and why is it important for earthquake resistant structure

What is ductility and why is it important for earthquake resistant structure?

Jul 06, 2020

I've heard ductility referred to as the "secret sauce of seismic engineering," and I think that's truly the perfect way to describe it. But maybe you've heard this before and don't know why or how it is true? I hope this blog can shed some light on that for you.
Ductility is technically defined as the "ability to withstand cyclic deformations," and as such is not directly related to flexibility or stiffness. Flexibility and stiffness are measurements of how far an element will deflect under a given force, whereas ductility is more about how the element will deflect, especially at yielding and beyond. In the simplest of terms, a ductile structure will bend and not break, which greatly reduces the risk of a catastrophic failure.
As an example, consider an unreinforced masonry shear wall, which will crack and fail in a brittle manner during an earthquake, compared to a steel moment frame which, ideally, will sustain large deflections, deform elastically, and resist collapse during the seismic event.
A book by Mario Salvadori titled Why Buildings Stand Up does a great job of illustrating the concept of ductility, so I'll borrow from him here. Salvadori writes of ductile materials, "materials that behave elastically under relatively small loads and plastically under higher loads do not reach their breaking point suddenly. Once they stop behaving elastically, they keep stretching (or shortening) under increasing loads until they continue to so even without an increase in loads. Only then they fail. If a steel wire is weighted heavily enough, it will keep stretching or yielding under a constant load. It thus gives warning of its impending failure."
If you reread that last paragraph, while visualizing the stress-strain curve of steel, you can see the great impact of ductility and how it can increase the resiliency of our structures. Salvadori explains that by bending without breaking, ductile materials give a "warning" that they're going to fail, as opposed to brittle structures that fail with no warning and often in a catastrophic manner. This allows for the safe evacuation of occupants which is ultimately the goal of our structures in seismic regions.
This, of course, causes me to reflect on the limit state to which we design our structures: life safety. There are technically four limit states, listed here with increasing damage: operational (no damage), immediate occupancy, life safety, and collapse prevention. By choosing "life safety" as the industry standard, we are agreeing to design to a standard in which damage can occur, but only to the extent in which occupants will be able to evacuate safely. If construction in seismic regions were done with more brittle materials, this standard would not be able to be achieved, as the failure would be sudden, with no warning. By using ductile materials, we are given warning, and can accept a lower limit state without worrying about a sudden, dangerous, and potentially deadly collapse.
I hope that this has provided some insight into the importance of ductility outside of just the numbers and the code. The materials we choose to design with, and the way our structural connections are detailed, can make all the difference in the success of our buildings and the safety of their occupants during and after a seismic event.
Salvadori, Mario. Why Buildings Stand up: the Strength of Architecture. W.W. Norton, 2002.
About the Author: Erin E. Kelly

Ms. Kelly is an experienced structural engineer with a focus on seismic risk. She has extensive experience in structural failure investigations, seismic structural design, and seismic risk assessments. Through the School of P.E., she has taught a 32-hour course for the California Seismic P.E. Exam, authored several blog posts, and contributed to other review products. She has a Bachelor of Science in Civil Engineering from Johns Hopkins University and a Masters of Engineering in Structural Engineering from Lehigh University.

Latest Blogs

27 Jul

The Five Best Ways to Prepare for the CA Surveying Exam

20 Jul

Three Must-Know Skills to Pass the California Surveying Exam

13 Jul

Everything You Need to Know About the CA Surveying Exam

Blogs by Year/ Month

2025 (24)
  • June (2)
  • May (5)
  • April (4)
  • March (4)
  • February (4)
  • January (5)
2024 (52)
  • December (4)
  • November (5)
  • October (4)
  • September (4)
  • August (5)
  • July (4)
  • June (4)
  • May (5)
  • April (4)
  • March (5)
  • February (4)
  • January (4)
2023 (54)
  • December (4)
  • November (5)
  • October (5)
  • September (5)
  • August (5)
  • July (5)
  • June (6)
  • May (4)
  • April (5)
  • March (6)
  • February (3)
  • January (1)
2022 (52)
  • December (5)
  • November (4)
  • October (4)
  • September (5)
  • August (4)
  • July (5)
  • June (4)
  • May (4)
  • April (5)
  • March (4)
  • February (4)
  • January (4)
2021 (63)
  • December (5)
  • November (4)
  • October (4)
  • September (5)
  • August (4)
  • July (4)
  • June (3)
  • May (1)
  • April (8)
  • March (9)
  • February (8)
  • January (8)
2020 (57)
  • November (2)
  • October (4)
  • September (4)
  • August (5)
  • July (4)
  • June (5)
  • May (6)
  • April (9)
  • March (9)
  • February (7)
  • January (2)
2019 (34)
  • December (4)
  • November (7)
  • September (1)
  • August (8)
  • July (5)
  • June (1)
  • May (4)
  • February (1)
  • January (3)
2018 (61)
  • December (4)
  • November (10)
  • October (12)
  • September (12)
  • August (11)
  • July (8)
  • June (1)
  • May (1)
  • March (1)
  • February (1)
2017 (28)
  • August (1)
  • June (4)
  • May (4)
  • April (5)
  • March (5)
  • February (5)
  • January (4)
2016 (41)
  • December (4)
  • November (5)
  • October (6)
  • September (7)
  • August (7)
  • May (1)
  • April (4)
  • March (3)
  • February (1)
  • January (3)
2015 (15)
  • December (3)
  • November (1)
  • September (2)
  • August (3)
  • July (1)
  • June (1)
  • May (1)
  • March (1)
  • February (2)
2014 (3)
  • December (1)
  • November (1)
  • October (1)

We use cookies that are necessary to operate this website and to offer you a better experience. By proceeding, you acknowledge that you accept these cookies. To learn more, visit our Privacy Policy.

Subscribe

Keep up to date with the latest School of PE news and current offers.

  • School of PE Logo White
Our Company
  • About Us
  • Contact Us
Partnerships
  • Become an Affiliate
  • Companies Served
  • Corporate
  • Universities
  • Work with Us
Resources
  • Affirm Financing
  • Blog
  • Corporate Terms and Conditions
  • DMCA
  • Engineer in Training
  • Errata
  • FAQs
  • Pass Guarantee Policy
  • Money-Back Guarantee
  • Podcast
  • Return Policy
  • Site Map
Promotions
  • Discounts
  • University Students

Copyright © 2025 Privacy Policy

Copied to clipboard